

First Test Measurements of a 64k pixel readout chip working in single photon counting mode

M.Campbell

CERN, 1211 Geneva 23, Switzerland

On behalf of the Medipix2 Collaboration*

(Special thanks to X. Llopart)

* See: http://medipix.web.cern.ch/MEDIPIX/

Outline

Introduction

- Motivation for the chip design
- The Medipix2 pixel cell
- The Medipix2 chip architecture
- Electrical measurements
- Conclusions
- Future work

Medipix1 image of a sardine

X-ray tube Mo target 30 µm Mo filter 25 kV 5 mAs 50 cm from source Raw data

Motivations

- Develop a single photon counting chip competitive in spatial resolution with film-screen systems
- Many high-Z detector materials trap holes design front-end sensitive to both electron and hole collection
- Add 2 levels of discrimination to begin to study spectroscopic behaviour
- 3-side buttable chip was required
- Deep sub-micron CMOS (0.25mm) was available and well characterized.

Characteristics of Medipix2 Chip

- Square pixel size of 55 μm
- Sensitive to positive or negative input charge
- Pixel by pixel detector leakage current compensation
- Window in energy as precise as possible
- 13-bit counter per pixel
- Count rates of 1 MHz/pixel (0.33 GHz/mm²)
- 256 x 256 pixels
- 3-side buttable
- serial or parallel I/O
- 9 special pixels with analog readout

Medipix2 Pixel Cell

Medipix2 Pixel Cell Layout

Michael Campbell

Medipix2 Chip Architecture (I)

Michael Campbell

Medipix2 Chip Architecture (II)

September 2002

Michael Campbell

Measurement Setup

September 2002

CERNY

Preamplifier and discriminator measurement

 Measurements have been done using the Test output Pads and applying a voltage test pulse to the on-pixel injection capacitance.

- All the reported measurements are done using the electronic calibration (Injection capacitor + external voltage pulse).
- The 8fF injection capacitor nominal value has a tolerance of 10%.
- The dedicated Muros2 readout system (Muros2 + Medisoft) has been used

Michael Campbell

Threshold Linearity

Michael Campbell

Threshold Equalization (I)

Michael Campbell

Threshold Equalization (II)

Threshold Equalization (III)

Michael Campbell

Threshold Equalization (IV)

Michael Campbell

Threshold Equalization (V)

THL=140 (2.8 Ke⁻)
Injection of 1000 pulses of 3.6 Ke⁻
Matrix unmasked
30x30 pixels active

September 2002

Michael Campbell

Summary of the Electrical Measurements

	Electron Collection	Holes Collection
Gain	12.5 mV/ke ⁻	13.25 mV/ke ⁻
Non linearity	<3% to 100 ke ⁻	<3% to 80 ke ⁻
Peaking time	<200 ns	
Return to baseline	<1ms for Qin <50 ke	
Electronic Noise	S nL~ 105 e ⁻ S nH~ 105 e ⁻	
Threshold dispersion	S nTHL~ 500 e ⁻ S nTHH~ 500 e ⁻	
Adjusted Threshold dispersion	SnTHL~ 110 e SnTHH~ 110 e	
Analog power dissipation	~8 mW/channel for a 2.2 V supply	

Periphery Measurements

- The 13 DACs perform as simulations
- Fast shift register works at > 100 Mhz*
- Peripheral logic works to > 100 Mhz*
- Serial/parallel I/O work
- LVDS drivers and receivers work to > 100 MHz*

Radiation Tolerance Measurements

- 10 keV X-ray source
- Chip under bias conditions
- Applied dose rates:
 - 3.9 krad/min up to 150 krad
 - 8.04 krad/min from 150 krad to 500 krad
- Analog power supply current increase from 200mA to 260 mA
- Digital power supply current increase sharply @ 200 krad reaching 1100 mA @ 500 krad
- After 1 week of annealing at 100°C the power supplies current recovered to pre-irradiation values
- Chip showed normal behavior untill 200 krad and still functioning after annealing at 500 krad

Conclusions

- A prototype chip consisting of 256x256 pixels has been produced with a square pixel size of 55 µm. Each pixel has around 500 transistors.
- Using the dedicated Medipix2 readout system (Muros2 and Medisoft4) complete electronic measurements and threshold calibration have been done.
- Adjusted threshold variation ~110 e⁻ rms for both levels of discrimination.
- Electronic Noise ~105 e⁻ rms.
- Difficulties to lower the threshold under 2.5 Ke⁻ with the present setup.
- The chip is radiation tolerant until at least 200 Krad.

On-going work

- A new chipboard card is ready to be tested with improved decoupling and power distribution.
- Probe tested wafers have been sent for bump bonding to high resistivity standard p⁺ on n silicon detectors.
- This should allow an absolute calibration with radioactive sources.
- Other materials will be tried later (CdTe, GaAs, etc...)

Future Prospects

- With pixel shrinking charge sharing starts to dominate the detector behavior.
- Hexagonal pixels (on the detector side) become attractive.
- New front-end electronics architectures are needed.
- Some ideas are presented in a recently accepted paper for publication in the NSS/MIC IEEE journal.
- Using deeper sub-micron CMOS a whole spectrum of new possibilities opens with e.g. time-resolved measurements, very high dynamic range applications, colour X-ray imaging...