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Overview

• Short description of the Medipix1 chip

• Standard mask generation with Medisoft

• New way to generate a mask by including the sensor material

• Properties of new mask and comparison with standard mask

• Simulation of noise characteristics of Medipix1 and comparison

with measured values

• Conclusions
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The Medipix1 chip

• Bump-bonded hybrid pixel de-

tector; e. g. with a 300µm Si

layer as sensor material

• Single photon counting device

• 64×64 pixels with a size of 170×170µm2 each with 15 bit counter

• Energy sensitivity due to a global threshold (Vth) discriminating

the charge generated by photons

• Threshold can be fine tuned for every pixel

→ equalisation over the whole chip is possible

Daniel Niederlöhner
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Threshold equalisation
• Problem: due to fabrication tolerances the discriminators are not

totally equal so the individual responses diverge

• Threshold of every pixel can be varied around the global threshold

by 8 settings (3 bit)

→ distribution can theoretically be narrowed by a factor of 8

• Maximum range of the variations is controlled by a global parame-

ter: adjustment range (Vtha)

threshold
(V  )th
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Electronic mask generation (I)

• Medisoft and MUROS can

generate a “mask”, which

stores the necessary informa-

tion per pixel to optimise for

a desired threshold

• Different photon energies can be simulated by applying pulses with

varying height to the test input of each pixel electronics

• A scan with the test pulse height yields response curve

of every pixel
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Electronic mask generation (II)

• Adjustment range has to be ad-

apted to the width of the unad-

justed threshold distribution

→ 2 scans necessary:

without and with maximum cor-

rection

• Choose that bit setting for every pixel, which produces least

threshold spread

• Distribution of the thresholds over whole chip is narrowed

by a factor of 4 – 5
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Limitations of the electronically generated mask

• Because of nonlinearities the mask is specific

for the selected threshold

• Equalisation regards only the electronics, not

the “physical frontend” (conversion layer and

bump-bonds)

• Images are very noisy as soon as threshold

is in the photon spectrum → What is the

cause: bad frontend or mask?

→ Generate a mask including the electronics

and frontend by using X-ray photons:

“absolute mask”

threshold below the photon spectrum

threshold inside of the photon spectrum
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How to create an absolute mask (I)

• Thresholdscan with X-ray

source: 109Cd

83 % of intensity at 22.1 keV,

17 % at 25 keV

Take images with different

thresholds and plot the re-

sponse of every pixel
Vthreshold [V]
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• One would expect a superposition of two steps, but due to noise

the response is smeared out

• Assume one error function and fit with f(x) = a · erf(b(c− x)) + d

• Parameter c mirrors the individual response of each pixel to the

incoming photon energy: reduce width of distribution
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How to create an absolute mask (II)

• Measure influence of adjustment ran-

ge (Vtha) on threshold by varying it

with maximum correction

• Adapt adjustment range to width of

unadjusted threshold distribution

• Thresholdscans for every adjust bit

setting necessary

• Look up the best bit setting for every

pixel to narrow the distribution

→ Mask generation regarding the frontend is finished
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Threshold distributions before and after equalisation

• Graphs show fitted error functions for all pixels before and after the

equalisation: spreading is obviously smaller

• Corresponding fit parameter c is still gaussian distributed with

variation σ as a measure for the quality of the equalisation:

σbefore

σafter
= 4.53

before equalisation: σ = 0.0403 after equalisation: σ = 0.0089
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Comparison of masks – bit settings

• Histogram the pixelwise diffe-

rence of electronically generated

mask and absolute mask

• Almost 50 % of the pixels have

identical setting

• Less than 10 % differ by more

than one

→ Main reason for different response of pixels is not the frontend:

it is the spread of the response of pixel electronics that cannot be

completely corrected
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Comparison of masks – image quality
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Different way of generating the absolute mask has an obvious

impact on the image quality

→ Difference in settings are small but important
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Properties of absolute mask

• New way of generating a mask with almost same results:

– Distribution of thresholds narrowed by 4 – 5, but still ± 1 keV

→ Images are still noisy when threshold is inside spectrum

parameter c without adjustment parameter c with adjustment
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Simulations on the electronics noise

• Two causes for decrease of image quality:

– Time invariant gaussian distributed pixel thresholds:

adjusted to ± 1 keV

– Gaussian gain noise from preamplifier in each pixel electronics

• Simulations including the frontend to find magnitude

of noise in keV (ROSI):

– Thresholdscans with 109Cd source analogue to measurement

– Threshold spread: gaussian distributed ± 1 keV

– Gaussian distributed gain noise with different widths

– Fit data with f(x) = a · erf(b(c− x)) + d and compare with

results from measurement

– Slope of error function is characterised by parameter b
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Results of simulations

• Best match of parameter c to measured data when electronics noise

varies ± 3.2 keV

• Model of gaussian distributed noise is confirmed

• Magnitude of noise corresponds to previously measured values

parameter b – measured parameter b – simulated
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Conclusions

• Mask generation with X-ray source regards the whole chip:

electronics and physical frontend (conversion layer and

bump-bonds)

• Frontend is not the reason for poor image quality when threshold

is inside of X-ray spectrum

• Electronic noise (≈ ± 3 keV) decreases the possibility of taking

energy resolved images

• Hopefully less noise and nonlinearities in Medipix2

→ Improved image quality
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