X-ray imaging with a silicon microstrip detector coupled to the RX64 ASIC

G. Baldazzi^a, D. Bollini^a, A.E. Cabal Rodriguez^b, W. Dąbrowski^c,
A. Diaz Garcia^b, M. Gambaccini^d, P. Giubellino^e, M. Gombia^a, P. Grybos^c,
M. Idzik^{c,e}, A. Marzari-Chiesa^f, L.M. Montano^g, F. Prino^h, L. Ramello^h,
M. Sitta^h, K. Swientek^c, A. Taibi^d, A. Tuffanelli^d, R. Wheadon^e, P. Wiacek^c

^a Dipartimento di Fisica dell'Università di Bologna and INFN, Bologna, Italy;
^b CEADEN, Havana, Cuba;
^c Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, Cracow, Poland;
^d Dipartimento di Fisica dell'Università di Ferrara and INFN, Ferrara, Italy;
^e INFN, Torino, Italy;
^f Dipartimento di Fisica Sperimentale dell'Università di Torino and INFN, Torino, Italy;
^g CINVESTAV, Mexico City, Mexico;
^h Dipartimento di Scienze e Tecnologie Avanzate dell'Università del Piemonte Orientale and INFN, Alessandria, Italy

Luciano Ramello, Universita' del Piemonte Orientale (Alessandria, Italy) IWORID02, Amsterdam, 8–12 September 2002

Outline

- Motivation and intended applications
- System description
- Microstrip detectors
 - Good spatial resolution (100 µm pitch)
 - RX64 readout chip for single photon counting
 - Low noise (designed for cristallography @ 8 keV)
 - High counting rate

- Measurements:
 - RX64 internal calibration
- Gain estimation
- Noise measurement
- ***** *Radioactive sources* Gain measurement, absolute energy scale
- ★ Quasi-monochromatic X-ray beam
- Energy scans
- Imaging tests

Motivation and applications

- One-dimensional silicon array for scanning mode imaging
 - Good spatial resolution with reduced number of channels
- Advantages of digital (single photon) X–ray imaging:
 - Higher detecting efficiency with respect to screen—film systems
 - Edge-on orientation (parallel incidence) preferred for E>18 keV
 - Possibility of processing and transferring digital data
 see also talk by P. Rato Mendes (normal incidence scanning)
- Subtraction imaging: removes background structures
- Dual energy technique: isolates materials characterized by different energy dependence of linear attenuation coeff. μ
 - First application: angiography at iodine K–edge (33 keV)
 - Another application: dual–energy mammography (18+36 keV)
 - Suitable for small–scale installations

Silicon microstrip detectors

ring

- 132 strip detector for 1st prototype (2 RX64 chips)
 - AC-coupled strips
 - FOXFET biasing
 - Depth = $300 \,\mu\text{m}$
 - Strip pitch = $100 \,\mu m$
 - Strip length = 10 mm
- 400 strip detector for 2nd prototype (equipped with 6 RX64 chips)
 - bias line Detectors developed by ITC-IRST, Trento, Italy

first strip

Detector characterization

132 strip detector

400 strip detector

I-V for bias line and guard ring *Leakage current (typ.) for 128–400 strip det.* at 30 V \approx 24 – 33 pA/strip (22–25 °C) at 60 V \approx 28 – 44 pA/strip

Detecting efficiency

Efficiency for converting X-rays via photoelectric effect

Front configuration

- Strip orthogonal to beam axis
 - 70 µm of Al absorber
 - 300 µm active length
- *Edge* configuration
 - Strip parallel to beam axis
 - 765 µm of insensitive Si
 - 10 mm active length

The RX64 readout chip

- Binary architecture for readout electronics
 - preamp. + shaper (tunable peaking time) + discrim. + scaler : 1 bit information per strip
 - Single photon counting (up to 1 M per strip)
- 64 channels AMS 0.8 µm technology
 - 2 chips (128 channels) in the 1st prototype,
 6 chips (384 channels) in the 2nd prototype
 - Low noise (min. threshold 6 keV)

Parameter	Measured value	
Gain	$60-90 \ \mu V/electron$	
ENC (C_{det} =2.5 pF, I_{det} =100 pA)	167 el. RMS	
Input range	up to 10000 el.	
Peaking time	500-1000 ns	
Counting rate	200 kHz/channel	
Power consumption	$2.5 \mathrm{~mW/channel}$	

- NI's PCI–DIO–96 (desktop) or DAQCard–DIO–24 (portable)
- NI's LabVIEW 6i software

Measurements with internal calibration

- Calibration pulse of ≈5300 electrons (internal voltage step applied to $C_{test} = 75$ fF)
- Measure counts vs. threshold (noise ends at 80 mV)
- Gaussian fit to differential distr. gives signal amplitude and noise at discrim. output
- Gaussian peak threshold distribution for 128 channels:
 - Threshold spread $\approx 8\%$
 - Small systematic difference
 (≈ 4%) between the chips

Response linearity, gain estimation

- Scan with 10 different amplitudes (4–22 mV)
- Circuit response linear up to 8000 electrons (30 keV) for $T_{peak} = 1 \ \mu s$
- Linear fit: gain and comparator offset

 $\langle Gain \rangle = 61.6 \pm 1.4 \ \mu V/el.$

Small (3.5%) systematic difference between chips

Noise measurements

Detector with 128 equipped channels:

- RMS value of noise = $8.1 \text{ mV} \Rightarrow \text{ENC} = 131 \text{ electrons}$
- RMS of comparator offset distribution 3.2 mV: 2 times smaller than noise (common threshold setting for all channels)

Module	T(peak)	Gain (µV/el.)	ENC (electrons)
2xRX64+detector	LONG	61.6	131
6xRX64 alone	LONG	63.7	176
	SHORT	82.8	131
6xRX64+fanout	LONG	63.7	184
(no detector)	SHORT	82.8	148

Results with ²⁴¹Am fluorescence source

- K_{β} peak clearly visible for Mo, Ag and Ba targets
- Gaussian fits to K_a peak give absolute energy calibration

- RMS noise (from Ag) = $11.2 \text{ mV} \Rightarrow \text{ENC} \approx 180 \text{ electrons}$

• Due to fluctuations in *e*-*h* pairs + higher strip bias voltage

Gain evaluation with source

- Linear fit in the range 8<E<30 keV (excl. Am–Ba)
- Gain distribution for the 128 channels
 - *→ <Gain>* = 17.0 mV/keV

 \Rightarrow 61.7 μ V/el.

- RMS gain= 0.3 mV/keV
- Small (2.7%) systematic difference between the two chips
- Good agreement with the gain extracted using the internal calibration

Quasi monochromatic X-ray beam

- W–anode X–ray tube
- X-ray beam monochromatized by Bragg diffraction in a mosaic cristal
 - $2.8 \times 6.0 \times 0.1$ cm³ highly oriented pyrolitic grafite crystal
 - X-ray tube mounted on a goniometer
 - \rightarrow X-ray energy selection
 - Possibility of dual energy beams (using 2nd order Bragg diffraction)
- Detector placed at ≈ 90 cm from the crystal
- 300 µm wide collimator upstream from the detector (FRONT config. only)

Energy scans with X-ray beam

 Discriminator threshold scans taken with 6 different energies of the quasi-monochromatic X-ray beam

- Detector much more efficient in the edge configuration in the whole energy range considered (18–36 keV)
- Rate capability: at 20 keV, counts ∝ mAs (5–225 mAs), with at least a factor of 10 margin before saturation

Measured detector efficiency

 Acceptable agreement
 between data measured and theoretical expectations (Compton neglected) Theoretical efficiencies as a function of energy in front and edge configurations

Energy scan results

• Excellent agreement among the different data sets

- Quality of the tuning of the quasi monochromatic X–ray beam

• Gaussian width \approx 13.4 mV (was 11.2 mV with Am–Ag source)

• Enlargement reflecting the energy spread of the quasi-monochromatic beam

K-edge subtraction angiography

- Medical examination \rightarrow visualization of occlusions in arteries
- Conventional procedure for angiography
 - Iodate contrast medium injected directly in the coronary arterial system
 - Catheter fitted in the femural artery \rightarrow invasive procedure (high risk)
 - Long fluoroscopy exposure time to manage the catheter up to the heart
 - X–ray transmission image taken
 - Iodine X-ray absorbtion coefficient different from the surrounding tissues
- K-edge subtraction angiography (usually at synchrotron facility)
 - TWO images taken with two monochromatic beams
 - 1st BELOW and 2nd ABOVE the iodine K-edge (at 33.13 keV)
 - Pixel by pixel subtraction of the two images to extract the iodine signal
 - **Enhanced contrast:** \rightarrow lower Iodine concentration needed

 \rightarrow possible intravenous injection of the contrast agent

Imaging test

- Detector in edge configuration
- Test object
 - plexiglass step wedge phantom
 - 40 mm high 30 mm wide
 - Thickness ranging from 10 to 45 mm
 - Three 1 mm diameter cylindrical cavities
 - Filled with iodate solution
 - *Solution concentration = 370 mg/ml*
- Images taken with quasi-monochromatic beam
 - First image at 31 keV
 - Second image at 35 keV
- Two dimensional image obtained by moving the object in the orthogonal direction

Cavities filled with iodine

Single energy images

Data corrected for X-ray beam intensity profile, flux differences at the two energies and detector efficiency

Image at 31 keV

at 31 keV

Image at 35 keV

the attenuation characteristics of the step-wedge phantom

K-edge subtraction image

Subtraction image = ln(Image35) – ln (Image 31)

- No gradient due to the attenuation characteristics of the phantom
- Iodine contrast enhanced
 - Detail visibility improved

Conclusions and outlook

- Detecting system for X–ray imaging (8–36 keV) developed and tested
 - Gain and noise measured with chip calibration and fluorescence sources
 - $\langle Gain \rangle = 17.0 \text{ mV/keV} \Leftrightarrow 61.6 \text{ }\mu\text{V/el.} @ T(peak) = 1 \text{ }\mu\text{s}$
 - Noise threshold $\approx 80 \text{ mV} \Leftrightarrow 4.7 \text{ keV} \Rightarrow operation with threshold as low as 6 keV$
 - $ENC \approx 131$ electrons (1 cm long strips, 128 equipped channels)
- Energy scans with quasi-monochromatic X-ray beam
 - X-ray energy in excellent agreement with the expectations
 - Energy spread small with respect to the intrinsic noise of the system
- K-edge subtraction angiography test (128 equipped channels)
 - Contrast enhanced + background structure removed
- Work in progress towards clinical applications:
 - Larger detectors (400 strips: under test; 4 cm length) + double threshold chips
 - Large field dichromatic X-ray source for clinical angiography